

Kornél Czimber University of Sopron, Faculty of Forestry Institute of Geomatics and Civil Engineering

Smart Forest

DARE W1

Content

Hydro-meteorological 1. monitoring in forests 2. Climate modeling 3. Precision Forestry 4. Smart Sensors 5. Smart Forest 6. Synthesis

Smart Forest

1. Hydro-meteorological monitoring

 Long experiment since 1980 Small water catchment area Several hydrological components Measuring runoff, ground water Hydro-meteorological gardens Traditional instruments Home developed instruments

Smart Forest

1.1. Hydro-meteorological analysis

 Long term analysis • Runoff, ground water Hydrological models Evapotranspiration Interception Model development Many scientific relationships Many publications

Smart Forest

1.2. Hydro-meteorological sensors

 Analogue/Manual sensors Precipitation, Runoff Interceptions, Ground water Autonomous/Digital sensors Temperature, Precipitation • Air humidity, Wind • Digital data storage No communication

1.3. Home-developed sensors

 Design and develop of sensors Open technology • ARM CPU, C programming Data storage • 3D printing No online communication

Smart Forest

2. Climate modeling

Climate change impact on forests
Investigation since 2001
Several related projects
AgroClimate 1, 2
Development of DSS
upcoming presentation

Smart Forest

2.1. Climate modeling

Past 1981-2010
Climate Zones
Tree species
Yield maps

Smart Forest

2.2. Climate modeling

Future 2041-2070
Climate Zones
Tree species
Yield maps

2.3. Project Conclusions

- Weather stations are located in cities far from forest
- Forested areas are mainly hilly, mountainous areas
- Extrapolation of these data differs from reality
- We need sensors in the forests

Smart Forest

3. Precision Forestry

 Meaning of Precision Accurate Geographic Position Geographic Information Systems Forestry GIS, Precision GIS Precision Forestry GIS: precise geospatial models of single trees Precision Forestry

3.1. Laser scanning

- Very detailed 3D Survey
- Aerial, Terrestrial ...
- Point Cloud Processing
- Single tree models
- Stem, branches
- Crown, heightSocial situation

Smart Forest

3.2. Satellite & airborne sensing

 Sentinel-2 & UAV images 10 m & 1 cm spatial resolution 5 day temporal resolution Usage of satellite images: Tree species classification Forest cover changes Forest health changes

taeg@taegrt.hu 🛛 🔍

Smart Forest

E)

50

 \square

4. Smart Sensors

 Meaning of "SMART" • Phone, TV, home, city, contract ... Autonomous, advanced tasks Sensors, programs, connections Smart Sensors Various digital sensors CPU and data storage Communication, Battery

Smart Forest

4.1. Smart Sensors

 Independent operation Can measure many environmental parameters • NB IoT: narrow band **Internet of Things sensor** Sending data to Cloud Network of Sensors

Smart Forest

4.2. Smart Sensors

Complex sensor

- Temperature
- Precipitation
- Soil moisture
- Diameter growth
- Small sensors
 - Temperature, humidity
 - Movement

Smart Forest

4.3. Smart Sensors

- Collected data transferred into the Cloud
 - Temperature
 - Precipitation
 - Humidity
 - Soil moisture
 - Diameter growth
 - Movement

Smart Forest

4.4. Web-based data analysis

• Warning, current conditions Climate and drought analysis Multivariate analysis & aggregation Temperature, Precipitation Hydrological models Soil moisture changes • Stem diameter increment Biotic damage analysis Number of visitors

FACULTY OF

5. Smart Forest

- Real time monitoring of trees' responses to the environment
- Smart Forest is a novel, precise and online model about our trees and forests
- This model can synthetize many forestry disciplines, and provide data for complex analyses

Smart Forest

5.1. Smart Forest

 Precision Forestry + Smart Sensors Short-term (days) Alarm system (motion, fire), environmental condition, response Mid-term (years) Monitoring, relations & trend analysis Long-term (decades) Tree species selection, adaptation and mitigation strategies

6. Further Synthesis

Bioinformatics

- Pest analyses
- Selection of Resistant entities
- Bioremediation
- Preemptive forest protectionHydrological planning
- Disseminations

6.1. Dissemination

• 2021. University model change University contracted with a **Communication** Company Our innovations were reviewed Smart Sensors/Forest selected Communication campaign started

Smart Forest

6.2. Communication Campaign

• Fall 2021. – Spring 2022 • 2 pages press release "Smart options in Forests" 80+ written appearances 7 radio interviews 5 TV interviews

Thank You for Your Attention Kornél Czimber *czimber.kornel@uni-sopron.hu*

